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Abstract� In this paper we propose a stochastic geometric
model to study the energy burdens seen in a large scale hier-
archical sensor network. The network makes use of aggregation
nodes, for compression, �ltering and/or data fusion of locally
sensed data. Aggregation nodes (AGNs) then relay the traf�c to
mobile sinks. While aggregation may substantially reduce the
overall traf�c on the network it may have the deleterious effect
of concentrating loads on paths between AGNs and the sinks
� such inhomogeneities in the energy burden may in turn lead
to nodes with depleted energy reserves. To remedy this problem
we consider how one might achieve a more balanced energy
burden across the network by spreading traf�c, i.e., using a
multiplicity of paths between AGNs and sinks. The proposed
model reveals, how various aspects of the task at hand impact the
characteristics of energy burdens on the network and in turn the
lifetime for the system. We show that the scale of aggregation and
degree of spreading can be optimized. Additionally if the sensing
activity involves large amounts of data �owing to sinks, then
inhomogeneities in the energy burdens seen by nodes around the
sinks will be hard to overcome, and indeed the network appears
to scale poorly. By contrast if the sensed data is bursty in space
and time, then one can reap substantial bene�ts from aggregation
and balancing.

Index Terms� Stochastic geometry, Boolean model, sensor
networks, data fusion

I. INTRODUCTION

IN large-scale wireless ad-hoc/sensor networks enabled by
multi-hop relaying, it is critical to provide mechanisms

to conserve energy due to nodes' limited capabilities to
store and replenish energy. Additional challenges may result
from inhomogeneous spatial patterns in traf�c loads resulting
in uneven energy burdens on nodes which shorten network
lifetime. We consider a hierarchical organization of network
resources based on local aggregation of sensor data followed
by forwarding to a set of information sinks. The rationale is
to have nodes in close proximity elect an aggregation node,
whose role might be to compress, �lter, or perform data
fusion on spatially correlated data prior to relaying data to
an information sink. Unfortunately, such a hierarchy faces
an intrinsic problem: the nodes close to sinks will see a
disproportionate energy burden as they will see higher loads
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Fig. 1. Stages of operation for sensor network with mobile sinks.

of traf�c that �ows to sinks. One solution is to increase the
density of sinks, however this may end up being too costly.
In this paper we will assume that only a small number of
sinks are available relative to the size of network, and thus by
large-scale we mean that on average there are a large number
of sensors associated with each sink.

A second possibility is to make sinks mobile, i.e., have
sinks change their locations to balance the energy burdens
incurred across the network nodes [1]. As shown in Fig. 1, the
network can operate in two stages. In Stage 1 local aggregation
nodes (AGNs) may aggregate information from sensors in
close proximity while sinks move around. Then, in Stage 2,
the sinks may `probe' the network at high power, and collect
information from AGNs. Not surprisingly the effectiveness of
this scheme depends on a number of factors including the very
nature of the information being gathered. Among those which
we consider to be critical are: the timescale of sink mobility,
the spatio-temporal periodicity of sensed data, delay sensitivity
for data collection, and the character of the sensed phenomena.

Let us consider a few speci�c examples. If every sen-
sor generates data periodically on relatively short timescales
versus that on which sinks move, and if this data must be
relayed to sinks immediately, then the network will scale
very poorly for two reasons: concentration of energy burdens
and throughput collapse around sinks. In this case the only
reasonable solution is to put more sinks. However if data
delivery is delay insensitive AGNs may forward data only
when a sink is close by, i.e., in an opportunistic sense. In
this case the sink mobility increases energy ef�ciency and
throughput capacity [2] substantially.

By contrast let us consider application scenarios where the
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Fig. 2. Bursty phenomena and traf�c concentration.

`events' being sensed correspond to spatio-temporal bursts
of information and can tolerate delays on the order of the
timescales of sink mobility. We believe a number of interesting
applications fall in this category, including surveillance and
monitoring of bursty unknown, or poorly characterized, events.
Fig.2 shows an example, where only sensors covered by the
spatial phenomena generate data reports to nearby AGNs. In
this case the network can signi�cantly bene�t from the load
and energy balancing resulting from sink mobility. However
the following problem remains: aggregated data, which has
been successfully `compressed', can still be substantial, and
when forwarded on `narrow' paths to the sinks, may incur
substantial energy burdens on the associated nodes. Further-
more in a system with scarce sinks, these paths may involve a
large number of nodes. As such, this may result in substantial
inhomogeneities in the energy burdens the network will see
eventually shortening its lifetime.

To avoid such concentrations of energy burdens it is rea-
sonable to spread aggregated traf�c forwarded to the sink in
a proactive manner. In other words, have nodes cooperate to
create multiple paths over which traf�c is spread. The focus of
this paper is on modeling and analyzing stochastic geometric
models permitting one to evaluate the tradeoffs associated with
aggregation for purposes of `compression' and then spreading
of traf�c forwarded to mobile sinks.

In particular we will explore the following tradeoffs. First by
spreading traf�c over several paths, one can certainly balance
energy burdens but at the expense of having traf�c traverse
longer distances and thus larger average energy costs. Second
by aggregating information from nodes one can reduce the
traf�c load through compression, �ltering and/or data fusion,
but this may lead to undesirable inhomogeneities of load and
thus energy burdens from AGNs to sinks. The fundamental
design questions are:
• How much spreading is bene�cial for traf�c from the

AGNs to the sinks?

• When is the bene�t of aggregation (compression) of traf�c
counteracted by the resulting concentration of energy
burdens in the network ?

To capture the characteristics of the problem in this paper
we devise a spatial model for traf�c aggregation and spreading.
It is without a doubt a very simple caricature, based on �rst-
order models for energy and compression at AGNs, yet it
allows us to study how the network lifetime is affected by
a number of design parameters, including the effectiveness of
aggregation/compression, the density of sinks, battery capacity
of sensors, etc. We provide numerical study for the joint
optimization of the spatial scales for aggregation and spreading
so as to maximize the network lifetime.

This paper is organized as follows: in Section II we discuss
related work. In Section III we brie�y present our model and
assumptions. In Section IV we derive the mean and variance
of energy burdens, and based on those we discuss numerical
results on optimizing operation to maximize the network's
lifetime in Section V. Finally we conclude with Section VI.

II. RELATED WORK

There has been a substantial research effort on energy
conserving routing for large-scale ad hoc/sensor networks, for
different network scenarios and contexts.

One of the key approaches involves exploiting the corre-
lation structure in sensed data for compression. In [3], [4]
compression and routing models are proposed to evaluate
theoretical limits on what can be achieved. Also methods
to ef�ciently estimate correlation and perform source cod-
ing are proposed in [5], [6], [7]. In this paper we focus
more generally on `data fusion' where certain simple �ltering
and/or processing of locally sensed data is involved, possibly
mandated by a given application. We believe this can be
ef�ciently realized if one exploits local aggregation of traf�c.
Furthermore we consider sensed phenomena such that, either
the statistical properties are poorly characterized, or may vary
unpredictably. Thus if one wishes to exploit spatial correlations
in compressing traf�c, it must be performed `on-the-�y' with
the data at hand, in which case it makes sense to use local
aggregation of sensed data.

The use of mobile relays (or base stations) in large sensor
networks was proposed and studied in [8], [9], [1]. The idea
was to deploy automated robots to solve scalability problems
in sensor networks. Particularly in [1] the authors show how
the energy concentration problem around sinks can be miti-
gated by using a single mobile sink to smooth out �uctuations
in energy burdens. In this paper we tackle a more general
problem including hierarchical aggregation towards multiple
mobile sinks, and see how the performance can be optimized.
In particular we develop and analyze a model which captures
the impact that aggregation/compression, traf�c spreading and
moving sinks will have on the network's lifetime.

In this respect this paper is closely related to our previous
work [10] where we modelled random, unstructured traf�c in
a homogeneous network as inducing spatial traces of energy
burdens and showed how proactive multipath routing could
be used to extend the network lifetime. In this paper we
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will leverage these results in modelling the spatial patterns
of structured, i.e., hierarchical aggregated, traf�c. Finally this
work is inspired by studies modelling network structure via
hierarchies of Voronoi tessellations. Notably modelling of
telecommunication networks using stochastic geometry was
proposed in [11] to successfully analyze the cost of a network
with a hierarchy associated with proximity � we will borrow
their framework and notation as appropriate in this paper.

III. MODELS AND ASSUMPTIONS

A. Reducing Traf�c Loads Via Local Compression, Filtering
and/or Data Fusion

Our model is geared at capturing the sensing of physical
phenomena which are bursty, unpredictable but spatially clus-
tered. In this context large scale distributed compression is
not likely to be effective, yet local aggregation combined with
compression, �ltering or data fusion can still be carried out to
reduce traf�c loads.

We will adopt a simple model for such reductions in traf�c.
Assume a sensor generates a packet of unit size and let f(n)
denote the reduced amount of data after the aggregation of n
packets. We assume f(n) has the following properties:

1) f(n) ≤ n,
2) limn→∞

f(n)
n = α, 0 < α < 1,

3) f(n)
n is a monotonically nonincreasing function of n.

The second assumption captures an asymptotic ratio for the
possible reductions in traf�c. The parameter α which we refer
to as the compression ratio, represents the ef�ciency of the
AGN in reducing traf�c, where a lower α corresponds to
better performance. The third assumption states that if an AGN
acquires data from more sensors, the ef�ciency does not get
worse. These assumptions may apply to generic classes of
sensing applications which use compression, �ltering and/or
data fusion. An example of f(n) can be the joint entropy
of n identically distributed discrete random variables whose
entropy rate is α.

Among the possible choices of f(n), we de�ne the follow-
ing for simplicity:

f(n) =
{

0 n = 0,
α(n− 1) + 1, n ≥ 1.

(1)

It should be noted that f(n) is close to but not linear since
f(1) = 1, i.e., the size of a single sample cannot be further
reduced by itself, otherwise the data fusion of multiple samples
is meaningless.

Although we use a speci�c f(n) for the analysis in this
work, our intent is to capture a fairly general concept of `com-
pression', whether it results from data compression, �ltering
or data fusion. In the sequel we refer to such reductions as
compression. For example, in a sensor network in which 5
monitoring sensors see the same event, and report it to their
associated AGN, the AGN may choose to �lter the data, and
send a single warning to a sink, achieving a 5:1 compression
ratio.

B. Network Model
1) Model for Network Operation: We describe the model

for network operation in further detail, recall Fig. 1. There
are three levels of hierarchy in the network organization:
sensors, AGNs and sinks where a node can act as a sensor
or an AGN. The network periodically repeats the following
procedure which we refer to as a round. A round consists of
two stages:

1) Aggregation/compression stage: If a sensor detects phe-
nomena, it forwards the data to the nearest AGN, or
equivalently, if we consider a Voronoi tessellation in-
duced by the locations of AGNs and a sensor is within
the cell of an AGN, then the sensor reports to that
AGN. The AGNs compress and store the received data.
Meanwhile the sinks randomly move around. We denote
the time duration of this stage by tc which is assumed
to be constant.

2) Forwarding stage: All the sinks stop moving and broad-
cast their location. The AGNs forward compressed data
towards the nearest sink. We denote the time duration
of this stage by tf which is assumed to be constant.

There is a high density of possibly redundant nodes in the
region of interest. On each round a certain fraction of nodes
are put into the `sleep' mode while the rest are assumed to be
in the `active' mode. Among the active nodes a certain fraction
become AGNs, and the rest of them act as sensors and/or
relays. These nodes are active for tc + tf , i.e., the duration
of a round. The randomized active node selection resumes in
the next round independent of previous rounds. To provide a
consistent coverage for the phenomena of interest as well as
relaying capacity the sum of spatial densities of sensors and
AGNs is constant in each round.

We assume that tf , the data collection time at the sinks, is
much less than tc, and that delay requirement for sensing is
met by these timescales. In other words, there is a suf�cient
margin between tc and the delay tolerance of the system.
Furthermore the sink mobility is suf�ciently random such
that the energy burden concentration problem is effectively
mitigated over rounds.

2) Spatial Model for Network and Sensed Phenomena: We
will assume the locations of active sensors and AGNs consti-
tute independent homogeneous Poisson point processes (PPP)
at each round. It is assumed that the locations of sinks during
the forwarding stage of each round also constitute a PPP which
has �xed intensity and is assumed to be independent across
rounds1. The density of sinks is assumed to be much smaller
than that of sensors so that a sink is on average associated with
hundreds or thousands of sensors simply due to its equipment
cost.

We model the spatio-temporal phenomena being sensed by
a Boolean model [12]. In our model the locations where sensor
data would be generated are captured by a random set Φ
generated by a homogeneous PPP Πe with intensity λe and a
primary grain Φ0 given by a circular disc with the radius re.

1This is a modelling assumption � in reality the nodes will observe the
same set of sinks which merely have changed their location over rounds.
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Fig. 3. Strip model.
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Fig. 4. Energy burden density h(·, ·, ·) on a strip.

Speci�cally Φ is given by

Φ :=
⋃

x∈Πe

(Φ0 + x), (2)

i.e., this model captures spatially clustered events with radius
re occuring at random locations. We assume at various rounds
the network sees a new realization of Φ, i.e., a new set of such
events. A sensor at location x `detects' an event, and generates
a packet of size 1 and sends it to the nearest AGN if x ∈ Φ on
that round. Finally we assume that these events are `rare' in
the sense that λe is much smaller than the density of sensors
� we discuss this in more detail in Section IV.

C. Spatial Model for Traf�c and Depletion Probability
We will use a simpli�ed �rst order model for energy

expenditures associated with data transmissions where energy
burdens are proportional to the traf�c incident on a node. A
routing model for spatially spreading traf�c is proposed as
follows. We capture the energy burdens induced by traf�c

routed from AGNs to sinks as two dimensional functions
capturing the energy burden per unit area and whose support
set captures a `footprint' of spatially clustered multi-path
routes between the AGNs and sinks. Speci�cally we assume
traf�c is spread over rectangular `strips' of certain width which
represents the spatial scale of spreading. Fig. 3 depicts the strip
model.

In fact energy burdens are not homogenous over a strip.
We associate a strip with a function capturing the energy
burdens at different locations as shown by Fig. 4. The proposed
function is motivated by previous `continuum' models for
�ows in high-density networks [10], [13]. In those works it
is shown that a `well-balanced' spreading of traf�c, leads to a
harmonic distribution of �ow strengths around the source and
destination.

Let the set Sw(s, d) be a rectangular strip of width w with its
ends located at s and d. We assume w ≥ 1 where the case w =
1 corresponds to the `baseline' scheme, i.e., a scheme without
traf�c spreading. The density for energy burdens, i.e., burden
per unit area, is given by a function hw : R2×R2×R2 → R2

such that, for x ∈ Sw(s, d) and ‖s − d‖ ≥ w where ‖ · ‖
denotes l2 norm in R2,

hw(x, s, d) =
{ w

2(w−1)‖z−x‖+w if ‖z − x‖ < w
2 for z = s, d,

w−1 otherwise,

and when ‖s − d‖ < w, hw(x, s, d) := 1, i.e., traf�c is
not spread for AGNs located within a distance w from the
associated sink. If x 6∈ Sw(s, d), h is de�ned to be 0. An
example of h for w = 6 and ‖s− d‖ = 9 is shown in Fig. 4.

D. Depletion Probability
At each round the energy burden from the perspective

of an active sensor depends on the overlapping scenario of
strips, i.e., data relaying/forwarding from AGNs to sinks.
Assuming that these independent burdens are accumulated
over a suf�cient number of rounds, we make a second-order
approximation, i.e., we apply the central limit theorem for the
distribution of cumulative energy burdens at a typical active
node2.

Under a given strategy S let us denote the energy burden
per round at a typical active node by a random variable Y (S).
Let us denote the mean and the standard deviation of Y (S) by
µ(S) and σ(S) respectively. Suppose a node has been active
for a total of l rounds, we refer to these as effective rounds3.
Let us denote the energy burdens on an active node in jth
effective round by Yj(S) and the accumulated energy burdens
at round l by Zl(S), i.e.,

Zl(S) =
l∑

j=1

Yj(S)

2It can be show that the energy burden at each round has �nite second
and higher order moments. The �tness for normality has been validated by
Lilliefors-adapted Kolmogorov-Smirnov test [14].

3A node is assumed to be active for l randomly selected rounds out of total
number of rounds for the network. For simplicity we assume that the total
number of rounds is suf�ciently large so that the locations of sensors and
AGN are roughly independent across rounds.
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where Yj(S) are independent and identically distributed as
Y (S).

Suppose the battery capacity of all nodes is dimensioned
proportional to its use, i.e., the number of effective rounds,
at the network deployment. We denote the capacity by b
which is parameterized by l such that b is some multiple β
of l, i.e., b = βl. Considering the independence of energy
burdens across rounds, we see that the mean and variance for
energy burdens accumulated for l effective rounds correspond
to lµ(S) and lσ2(S) respectively. For l suf�ciently large, the
depletion probability can be approximated as follows:

P (Zl(S) > b) ≈ φ

(
b− lµ(S)√

lσ2(S)

)
= φ

(√
l · zβ(S)

)

where we de�ne the following:

zβ(S) :=
β − µ(S)

σ(S)
, (3)

φ(u) :=
1√
2π

∫ ∞

u

e−v2/2dv. (4)

The objective is to minimize the depletion probability of
a typical node after l effective rounds, i.e., we would like to
maximize zβ(S). There are a number of constraints imposed
on the network such as the scales of spatial events, the density
of mobile sinks, compression performance, etc. Our goal is to
determine an `optimal' strategy S under these constraints.

IV. DERIVATION OF ENERGY BURDENS UNDER STRIP
MODEL

As stated in the previous section, for the optimal design of
system we need to estimate the mean and variance parameters,
i.e., µ(S) and σ(S).

A. Formula for Mean Energy Burden
We introduce our notation:
• Π0, Π1,Π2 denote PPPs of sensors, AGNs and mobile

sinks respectively. Alternatively Πk(B) represents the
intensity measure for the point process Πk for a Borel
set B ∈ R2 for k = 0, 1 and 2.

• λk is the intensity of point process Πk.
• Vz(Π) is the Voronoi cell with the nucleus at z ∈ Π

induced by the point process Π.
• Ex1,x2,...,xn

k is the Palm expectation given that n points
from Πk are located at x1, x2, . . . , xn. As a special case
E0

k denotes the Palm expectation given that a point in Πk

is at the origin. The similar notation applies to the Palm
probability Px1,x2,...,xn

k .
• Sw(y, z) is a rectangular strip of width w with the

midpoints of its ends located at y and z.
• Br(x) is a ball of radius r with its center at x.
• Φ denotes a Boolean model with the primary grain Φ0 :=

Bre(O) induced by a PPP Πe with intensity λe where O
denotes the origin.

In the sequel we assume that λ2 ¿ λ0, λ1 and (
√

λ2)−1 À
w, i.e., the spatial scale of the typical Voronoi cell V0(Π2)
is much larger than that of sensors, AGNs and the spreading

width. We will refer to this as large-cell assumption which
accounts for the relative sparsity of mobile sinks with respect
to the density of sensors.

The system design parameters are λ1 and w, i.e., the density
for aggregation and the scale for traf�c spreading: for this
reason we denote the mean and variance of energy burdens
at a typical location by µ(λ1, w) and σ2(λ1, w) respectively
although they depend on other system parameters. We start by
approximating µ(λ1, w).

We de�ne the following:

My := 1(y ∈ Φ) +
∑

xi∈Π0

1(xi ∈ Φ ∩ Vy(Π1)),

Ny := f(My).

For an AGN cell with nucleus at y, My accounts for the
number of sensors in Π0 including the AGN, that are covered
by Φ. Thus My is the total amount of data generated from the
AGN at y, and Ny is the output from AGN after compression.
Recall that hw(x, y, z) is de�ned as the energy burden density
at location x incurred by a strip originating from the AGN
at y towards the sink located at z. By multiplying Ny by
hw(O, y, z) we obtain the energy burden density experienced
at the origin when the aggregated traf�c generated by the AGN
at y is forwarded to a sink at z.

We are interested in the overall contribution of strips orig-
inating from each AGN to its closest sink. For the sake of
simplicity we will estimate the mean and variance of energy
burdens at a random location in the network.

Since this contribution is stationary, one can write the
expectation of the energy burdens from the perspective of the
origin:

µ(λ1, w) := E


 ∑

yj∈VZ0 (Π2)∩Π1

hw(O, yj , Z0)Nyj


 (5)

where Z0 is a random variable in R2 which represents the
location of the sink closest to the origin: note that this is an
approximation which ignores the edge effect on the boundaries
of Voronoi cells induced by Π2: this will be explained with
Fig.5 in the sequel.

Key results used to estimate (5) are the re�ned Campbell's
theorem [12], and Ryll-Nardzewski�Slivnyak's formula [15]
which is also known as Palm inversion formula. The re�ned
Campbell's theorem states that for a stationary point process
Πk the expectation of a measurable function on the con-
�guration of Πk can be converted to an expectation under
Palm measure, e.g., the following holds for a non-negative
measurable u:

E

[ ∑

x∈Πk

u(x,Πk)

]
= E0

k

[∫
u(x, θxΠk)Πk(dx)

]
.

where θx is a shifting operation, i.e., θxB = {z|z = y −
x, y ∈ B} for a set B ∈ R2. In the above formula by
setting u(x, Πk) := 1(x ∈ VX0(Πk))v(Πk) for a non-negative
measurable function v where X0 is the point in Πk which is
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closest to the origin, we obtain the Palm inversion formula:

E [v(Πk)] = λkE0
k

[∫

V0(Πk)

v(θxΠk)dx

]
.

We have the following proposition for our model.
Proposition 1: Under the proposed strip model µ(λ1, w) is

upper bounded by

λ1E0
1[N0] · m̃(w, λ2) (6)

where we de�ne m̃(w, λ2) as

m̃(w, λ2) := m(w) exp(−πλ2w
2) +

1
2
√

λ2

.

and m(w) as

m(w) :=
πw2

(w − 1)2
(w − 1− log(w))− πw

2
, w ≥ 1. (7)

Proof: From the Palm inversion formula one can rewrite
(5) as

λ2E0
2




∫

V0(Π2)


 ∑

yj∈V0(Π2)∩Π1

hw(x, yj , O)Nyj


 dx




= λ2E0
2




∫

V0(Π2)

E0,1


 ∑

yj∈V0(Π2)∩Π1

hw(x, yj , O)Nyj


 dx




where we have moved the expectation with respect to Π0

and Π1, denoted by E0,1, inside the integral and used the
independence among Π0, Π1 and Π2. Applying the re�ned
Campbell's formula for the term inside the integral, we can
write

λ2E0
2

[∫

V0(Π2)

∫

V0(Π2)

Ey
1 [hw(x, y, O)Ny] Π1(dy)dx

]
(8)

= λ2λ1E0
2

[∫

V0(Π2)

∫

V0(Π2)

hw(x, y,O)E0
1 [N0] dydx

]
(9)

By changing the order of integration in (9), i.e., integrating
with respect to x �rst, the following holds for the inner
integral:

∫

V0(Π2)

hw(x, y,O)dx =
∫

V0(Π2)∩Sw(y,O)

hw(x, y,O)dx

(10)

≤
∫

Sw(y,O)

hw(x, y,O)dx (11)

Thus by de�ning

gw(y, z) :=
∫

Sw(y,z)

hw(x, y, z)dx

we have an upper bound for (9) given by

λ1λ2E0
1[N0]E0

2

[∫

V0(Π2)

gw(y, O)dy

]
. (12)
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Fig. 5. Edge effects in the typical sink cell V0(Π2). Note the dimension of
the size of strips are exaggerated in the �gure for clarity.

We can further write

E0
2

[∫

V0(Π2)

gw(y, O)dy

]

= E0
2

[∫

R2
gw(y, O)1(Π2 ∩B‖y‖(y) = ∅)dy

]

=
∫

R2
gw(y, O)E0

2[1(Π2 ∩B‖y‖(y) = ∅)]dy

=
∫

R2
gw(y, O) exp(−πλ2‖y‖2)dy. (13)

since Π2 is a homogeneous PPP. By the de�nition of
hw(x, y, z) we have that

gw(y,O) =
{ ‖y‖ ‖y‖ < w,

m(w) + ‖y‖ ‖y‖ ≥ w

where m(w) is given by (7). We have that
∫

R2
gw(y,O) exp(−πλ2‖y‖2)dy

=
∫

R2
‖y‖e−πλ2‖y‖2dy + m(w)

∫

R2\Bw(O)

e−πλ2‖y‖2dy

=
∫

R2
‖y‖e−πλ2‖y‖2dy +

m(w) exp(−πλ2w
2)

λ2
. (14)

We integrate (14) by switching to polar coordinates, de�ning
ρ := ‖y‖ and using

∫ ∞

0

ρn exp(−πλ2ρ
2)dρ =

Γ(n+1
2 )

2(πλ2)
n+1

2

,

and from (12) and (14) we obtain the proposed upper bound.

Although (6) serves as an upper bound for the desired ex-
pression, we would like to use it as an approximation to the
mean cost throughout the paper considering the inequalities
involving (11) and (14) as follows.

Indeed (11) is an overestimate of (10) since it counts the
extra contribution incurred by some strips that `protrude' the
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cell boundary of a typical sink, e.g., see the shaded region A
in Fig. 5. However we have also ignored the contribution of
strips that `overlap' the cell boundary as is the case for A′

in Fig. 5, i.e., our expression is already an underestimate of
the actual mean cost. Thus considering the homogeneity of
Π0 and Π1, such errors will roughly `cancel out'. We see that
these edge effects occur when the strips originate from AGNs
which are located within a narrow region along the boundary
of the typical sink cell. Such region is a subset of a `band'
along the boundary as depicted in dotted line in Fig. 5, and
we see that its width is at most w. Considering the large size
of a typical sink cell with respect to the dimension of strips,
we note that the error associated with such band region is
relatively small. Thus we conclude that the majority of strips
are contained within V0(Π2) considering the relatively large
density of AGNs.

Finally note that under large-cell assumption µ(λ1, w) is
strictly increasing in w, i.e., the mean energy burden increases
with the degree of spreading since in order to do so some
packets take longer `detours'. This property of µ(λ1, w) shows
us that, excessive spreading incurs a cost that may eventually
counteract the load balancing bene�t achieved by the spreading
� this will be seen in the sequel.

The following proposition gives an estimate for E0
1[N0] in

1.
Proposition 2: For our network model we have that

E0
1[M0] = (1 +

λ0

λ1
){1− exp(−λeπr2

e)}, (15)

E0
1[N0] ≤ αE0

1[M0]

+ (1− α)(1− exp{−λe(
1
λ1

+
4re√
λ1

+ πr2
e)}).

(16)

Proof: By de�nition of M0, we have that

E0
1[M0] := E [1(O ∈ Φ)] + E0

1

[ ∑

xi∈Π0

1(xi ∈ Φ ∩ V0(Π1))

]
.

The �rst term of the above corresponds to the contact proba-
bility of a stationary Boolean model [12] which we denote by
p. It is given by

p := 1− exp(−λe|Φ0|) = 1− exp(−λeπr2
e)

where |·| denotes the Lebesgue measure in R2. In other words,
p is the probability that a randomly chosen point on R2 will
intersect with Φ. We have that

E0
1

[ ∑

xi∈Π0

1(xi ∈ Φ ∩ V0(Π1))

]

= λ0E0
1

[∫

R2
1(x ∈ Φ ∩ V0(Π1))dx

]

= λ0

∫

R2
E0

1[1(x ∈ V0(Π1))]E[1(x ∈ Φ)]dx

= λ0

∫

R2
P0

1(Π1 ∩B‖x‖(x) = ∅)P(x ∈ Φ)dx

= λ0{1− exp(−λeπr2)}
∫

R2
exp(−λ1π‖x‖2)dx

=
λ0

λ1
{1− exp(−λeπr2)}

which proves (15).
By de�nition of f(·) we have that

N0 = αM0 + (1− α)1(M0 > 0),

E0
1[N0] = αE0

1[M0] + (1− α)P0
1(M0 > 0).

It is dif�cult to evaluate P0
1(M0 > 0), thus we will once

again resort to a bound. Note that P0
1(M0 > 0) is the

probability that there exists either an AGN or a sensor which
lies within Φ within a typical Voronoi cell associated with an
AGN at the origin. A necessary condition for that event to
occur is that Φ has a nonempty intersection with the Voronoi
cell. In other words the following relation between the events
needs to hold:

{M0 > 0} ⊆ {V0(Π1) ∩ Φ 6= ∅},

which implies P0
1(M0 > 0) ≤ P0

1(V0(Π1) ∩ Φ 6= ∅).
The `capacity functional', i.e., probability that a stationary

Boolean model intersects with a compact set K, is given by

1− exp(−λe|Bre(O)⊕K|)

where ⊕ denotes Minkowski addition [12]. Thus we have that

P0
1(V0(Π1) ∩ Φ 6= ∅)

= 1−E0
1 exp(−λe|Bre(O)⊕ V0(Π1)|)

≤ 1− exp(−λeE0
1[|Bre(O)⊕ V0(Π1)|]) (17)

= 1− exp
(−λe

{
E0

1|V0(Π1)|+ E0
1[∂V0(Π1)]re + πr2

e

})
(18)

= 1− exp
{
−λe

(
1
λ1

+
4re√
λ1

+ πr2
e

)}
. (19)

In (17) we have used Jensen's inequality. In (18) we have used
Steiner's formula for Minkowski addition since the primary
grain Φ0 is a disc [12], where ∂V0(Π1) denotes the perimeter
of a typical Voronoi cell. In (19) we have used the mean area
and perimeter results for a typical cell of a stationary Voronoi
tessellation. This proves (16).

We introduce the following notation:

pb := (1− exp{−λe(
1
λ1

+
4re√
λ1

+ πr2
e)})

To summarize the mean energy burden (5) is upper bounded
by

m̃(w, λ2) [(λ0 + λ1)αp + λ1(1− α)pb] .

We will use this bound as an approximation to the actual mean
energy burden at the typical sensor.

B. Variance of Energy Burdens

Next we evaluate σ2(λ1, w) which is the variance of the
energy burdens at a typical location. Since µ(λ1, w) has been
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estimated we need to only consider the non-centered second
moment which is given by the following:

E








∑

yj∈Vz0 (Π2)∩Π1

hw(O, yj , z0)Nyj





2



= λ2E0
2




∫

V0(Π2)


 ∑

yj∈V0(Π2)∩Π1

hw(x, yj , O)Nyj




2

dx




= λ2E0
2




∫

V0(Π2)


 ∑

yj∈V0(Π2)∩Π1

h2
w(x, yj , O)(Nyj

)2 (20)

+
∑

yj ,yk∈V0(Π2)∩Π1
yj 6=yk

hw(x, yj , O)hw(x, yk, O)Nyj
Nyk


 dx


 .

(21)
It turns out that this second moment is dif�cult to evaluate

due to the second term of the above, i.e., (21). Thus we will
develop an approximation using the �rst term (20) of the above
as follows:

1) Estimate (20) as in Proposition 3.
2) In order to do so, we estimate E0

1[N 2
0 ] up to the �rst

order in p.
3) Using the estimate for (20), we �nd a heuristic approx-

imation to σ2(λ1, w).
It is dif�cult to directly evaluate E0

1[N 2
0 ]. Thus for simplicity

we will only concern ourselves with the terms that are O(p),
i.e., up to the �rst order of p. We assume that the sensing
phenomena are `rare' events, i.e., p ¿ 1. Small p means either
the density of events λe or the spatial scale of events re, or
both, are small. In our model we assume λe is a small number
compared to the density of nodes/AGNs, however re is such
that the area of events πr2

e is large relative to the density of
sensors, e.g., an event disc covers several sensors with high
probability. Overall λeπr2

e is assumed to be a small number
compared to 1 such that p = 1− exp(−λeπr2

e) ≈ λeπr2
e is a

good approximation.
To estimate the variance we �rst show the following propo-

sition:
Proposition 3: One can upper bound (20) by

λ1E0
1[N 2

0 ] · ṽ(w, λ2)

where we de�ne ṽ(w, λ2) as

v(w) exp(−πλ2w
2) +

1
2w
√

λ2

(22)

and v(w) is de�ned as

v(w) =
πw2

(w − 1)2

{
1
w
− 1 + log(w)

}
− π

2
, w ≥ 1.

Proof: The proof is similar to that of Proposition 1.
Next we bound E0

1[N 2
0 ] up to the �rst order in p. By de�nition

of N0 we have that
E0

1[N 2
0 ] = α2E0

1[M2
0] + 2α(1− α)E0

1[M0]

+ (1− α)2P0
1(M0 > 0).

We need to evaluate E[M2
0] which can be written as

E0
1[M2

0] = E [1(O ∈ Φ)] + E0
1

{ ∑

xi∈Π0

1(xi ∈ Φ ∩ V0(Π1))

}2

+ 2E0
1

[
1(O ∈ Φ)

∑

xi∈Π0

1(xi ∈ Φ ∩ V0(Π1))

]
.

(23)
The �rst term is simply the contact probability p. We have the
following proposition for the second term of (23).

Proposition 4: We have that, up to the �rst order in p,

E0
1

[ ∑

xi∈Π0

1(xi ∈ Φ ∩ V0(Π1))

]2

is bounded above by
λ0

λ1
p + 2.56p

λ2
0

√
λ1re

λ2
1(c + 2

√
λ1re)

where the constant c is by the expression (32) in the appendix.
Proof: See appendix.

Proposition 5: The third term in (23) is, up to the �rst order
in p, bounded above by

2λ0p

λ1
{1− erf(2πre

√
λ1)

4re

√
λ1

}

where erf(·) is the standard error function, i.e.,

erf(x) :=
2√
π

∫ x

0

e−z2
dz.

Proof: See appendix.
Combining the propositions we have that E[N 2

0 ] is bounded
above by

α2p

[
1 +

3λ0

λ1
− λ0erf(2πre

√
λ1)

2reλ1

√
λ1

+ 2.56
λ2

0

√
λ1re

λ2
1(c + 2

√
λ1re)

]

+ 2α(1− α)(1 +
λ0

λ1
)p + (1− α)2pb + o(p) (24)

where we will ignore o(p) term. Using this expression for
E0

1[N 2
0 ] we get an estimate for (20) as stated by Proposition

3. Then using the estimate for (20) we resort to simulation
of our model and use heuristic estimation of the variance as
follows.

The simulation results show that, the variance of energy bur-
dens σ2(λ1, w) is well approximated by (20) alone provided
that the sizes Voronoi cells induced by AGNs are large relative
to the spatial scales of phenomena. This is expected since the
cross terms NyjNyk

in (21) become less and less correlated
since the number of Π1 cells intersected by a single event will
become smaller. Due to the `scarcity' of phenomena and the
large sink cell size, (21) will be close to the square of mean
burdens thus they effectively cancel out. One can visualize this
easily, if the radius of events tends to 0 then Nyj and Nyk

will
be become completely uncorrelated.

However if the spatial scale of events are comparable to
AGN cell sizes, the correlation term plays a major role. Since
this is related to the relative scales between event discs and
the density of AGNs, we have heuristically come up with
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the following �nal estimate for σ2(λ1, w) based on extensive
simulations:

σ2(λ1, w) ≈ max(1, γ(πλ1r
2
e)ν) · λ1E0

1[N 2
0 ]ṽ(w, λ2) (25)

where γ and ν are some positive constants. In other words we
include an extra factor as a function of πλ1r

2
e multiplied by

(20). Note πλ1r
2
e is the average number of λ1 points in an

event radius, thus it captures the relative scales of phenomena
and AGNs. In addition to (20) this is a crude approximation
to σ2(λ1, w) as an effort to capture the degree of `clustering
effect' of events with respect to AGN cells.

Simulation results show that γ ≈ 0.89 and ν ≈ 0.5 is a
fair approximation. Thus we will use (25) as the expression
for variance of energy burdens with the above γ and ν in the
numerical results which is the next section.

Finally we take the cost associated with aggregation into
account. The traf�c aggregated at AGN is modelled by strips
of width 1 generated at the sensors towards their AGNs where
each strip carries traf�c of size 1. By the similar techniques
as those used for proving Propositions 1, the mean of the
total energy burdens including aggregation overhead can be
computed by simply adding 1

2
√

λ1
to the original expression

for the mean, i.e., (6).
As for the variance of energy burdens incurred by aggrega-

tion, we make an assumption such that, due to the large cell
size, most of the imbalance in energy burdens are caused by
traf�c concentration around sinks and accumulative burdens
associated with forwarding from AGNs, thus we ignore the
contribution to variance from aggregation. A more re�ned
treatment of the model for aggregation is a subject for future
study.

V. NUMERICAL RESULTS FOR THE OPTIMAL DESIGN

In this section we investigate optimizing the degree of
aggregation and traf�c spreading for a given compression
performance, the density of mobile sinks and the spatial
scales of phenomena via numerical methods. As introduced
in Section III-D, our objective is to maximize the lifetime of
the network. Since we have estimated µ(λ1, w) and σ(λ1, w)
the optimization problem can be formulated as follows:

maximize: zβ(λ1, w) :=
{

β − µ(λ1, w)
σ(λ1, w)

}
,

subject to: λ2 < λ1 < 1, w ≥ 1,

variables: w, λ1,

given: λ2, α, β, p, re, λe.

Note that we assume the sum of densities of sensors and
AGNs are �xed to 1, thus the density of sensors λ0 = 1− λ1

with the proper adjustments made to the previous analytical
results. We numerically �nd the optimal scales for traf�c
spreading and aggregation, i.e., w and λ1. It turns out that
with the above constraints zβ(λ1, w) admits an unique optimal
value.

First let us investigate the impact of the sink density λ2 and
the compression ratio α on the optimal spatial scales for traf�c
spreading and aggregation. In these results we have assumed
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Fig. 6. Optimal degree of traf�c spreading as a function of compression
ratio and sink density.

the network aims to operate a total of l = 200 effective rounds.
The maximum energy reserve β is appropriately scaled to
obtain each point in the plot such that the optimal spatial scales
yield a depletion probability of 10−4. For the plots Fig. 6 and
Fig. 7 the radius of event disc re is �xed to 4 which implies
there are on average about 50 sensors observing a single event
disc. The value of re is varied in the plots in Fig. 8 and Fig.
9. Note however that the contact probability p is �xed to 0.1
and thus the density of phenomena λe is adjusted with re.

Fig. 6 (Fig. 7) shows the optimal spatial scale w∗ (resp. λ∗1)
for traf�c spreading (resp. aggregation density) with varying
λ2 and α. Note that in these plots the axis for the density of
sinks is shown in terms of the average number of sensors
associated with a sink: for example 1000 nodes per sink
corresponds to λ2 = 10−3. The number of sensors per sink
ranges from 500 to 2000, and the compression ratio α takes
values 0.2, 0.4, 0.6 and 0.8 which represent excellent, good,
moderate and poor compression performance respectively. The
values of λ∗1 in Fig. 7 can be interpreted as follows: λ∗1 = 0.2
means that the density of sensors are 0.8, thus an AGN
aggregates traf�c from 4 sensors on average. Below we discuss
our main observations.

Longer routes require more spreading of traf�c. By
inspecting Fig. 6 we can make the following observation.
When we �x the compression ratio the optimal spreading
width tends to increase as the number of sensors per sink
increases. We see that in Fig. 7 the change in λ∗1 is negligible
with the variations in λ2 when α is �xed, i.e., the traf�c
generated per AGN is roughly constant. This implies that as
λ2 decreases the traf�c travels longer distances, in which case
the result in Fig 6 indicates that one should spread traf�c more.

This is intuitive since for larger sink cells, the number of
overlapping strips will be greater, on average, as compared to
that for smaller sink cells although the density of AGN, i.e.,
the total number of strips per unit area, remains �xed. This in
turn implies that the imbalance in the energy burden pro�le is
more of a concern, thus one should consider additional traf�c
spread to mitigate this effect.
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Fig. 7. Optimal aggregation density as a function of compression ratio and
sink density.
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Fig. 8. Optimal degree of traf�c spreading as a function of compression
ratio and spatial scale of events.

However note that the spreading width ranges between 2
and 4, which implies that the degree of spreading of 2 or 3
achieves most of the gains associated with load balancing in
this network. Further spreading would incur extra energy costs
which counterbalance these bene�ts.

Higher loads require additional spreading of traf�c. Let
us consider how w∗ varies when λ2 is �xed and we change
α. Fig. 6 shows that we should spread more conservatively
when the compression worsens. This may be interpreted as
a tension between mean and variance of the energy burdens,
i.e., the mean plays a larger role in a typical sensor's lifetime
with worsening compression ratios when the size of sink
cells is �xed. However if we consider Fig. 7 at the same
time, the overall traf�c per strip increases when compression
performance improves. For example when the average number
of sensors per sink is 2000, the optimal pair (w∗, λ∗1) is given
by (3.1, 0.4), i.e., roughly 1.5 sensors per AGN, when α = 0.8
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Fig. 9. Optimal average number of sensors per AGN as a function of
compression ratio and spatial scale of events.

and (3.6, 0.2), i.e., roughly 4 sensors per AGN, when α = 0.2.
Thus each strip carries an average of 0.6 and 2 units of load
when α is given by 0.8 and 0.2 respectively, where w∗ is
higher for α = 0.2 case at that operating point. Since the
sink cell size is �xed the average distance each strip spans is
identical, so strips with larger loads should spread more given
that the average length of strips is �xed. Finally in Fig. 7 we
see that the degree of aggregation increases, i.e., the densities
for AGN decrease with improving compression performance.

The above observations are intuitive: if one should traverse
certain distance and has more traf�c, then one should spread
the traf�c more. Also if some traf�c has to traverse longer
distances, then one should spread the traf�c more. This is
bene�cial to `future' energy balance of the network in that the
upcoming, possibly overlapping routes over the network will
see more balanced energy burden pro�les along their paths.

When the sensed phenomena are more `bursty' one should
further spread the traf�c: Fig. 8 represents the optimal degree
of spreading versus varying compression performance where
each curve represents different radius of event discs. The
values of re are given by 1,3 and 8 each of which corresponds
to there being roughly 3, 28 and 200 sensors per event disc
on average.

We have imposed an important constraint on this numerical
result: the contact probability p which represents the frac-
tion of total area covered by Φ in R2 space, is �xed, i.e.,
the larger dimension of phenomena re corresponds to the
lower phenomena density λe. For example a larger re would
mean the phenomena tend to more spatially `clustered' or
the phenomena has more `bursty' nature. Thus a larger re

parameterizes a sensed phenomena for various burstiness of
the spatial scale of phenomena.

As one can see in the �gure, it is clear that for larger re

one should spread more. The intuition is that, as the spatial
scale of an individual event grows the spatial concentration
of the traf�c will be more severe since the traf�c strips from
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AGNs will overlap with each other with higher probability, as
compared to that for smaller re. Thus the spreading of traf�c
becomes increasingly critical if the phenomena of interest has
a high degree of burstiness.

When physical phenomena are less bursty the system
admits further aggregation of traf�c: Fig. 9 represents the
the optimal degree of aggregation versus compression ratio
where each curve is associated with different values of re.
Speci�cally the y axis represents the average optimal number
of sensors per AGN. Clearly if events are less `clustered'
one can aggregate more traf�c and exploit the bene�ts of
compression further. If the events are highly bursty then more
aggregation exacerbates the concentration of energy burdens
on AGNs that see nearby events.

The aggregation of traf�c on a large scale is not bene�cial
even for excellent compression performance: The �nal obser-
vation is a negative one that, perhaps surprisingly even for a
very good compression performance, the degree of aggregation
should not be too aggressive. For example see Fig. 9 for
the case where re = 1 and α = 0.1, i.e., even though one
can reduce 90% of traf�c compression, the optimal degree of
AGN organization is such that only about 1 out of 10 sensors
becomes an AGN on average. This corresponds to a benign
situation where the spatial events are highly `scattered', i.e.,
re = 1 implies there are only about 3 sensors per event disc.
When the events are more bursty, i.e., with larger re, our
results show that a only a few sensors per AGN is the optimal
scale of aggregation.

The reason can be explained as follows: if one aggregates
more traf�c, one then needs to address concentration of energy
burdens between AGNs and sinks. Although the problem can
be mitigated by spreading traf�c at a proper scale, one also
incurs energy costs to do so. By contrast our model is such
that the further one aggregates the traf�c, the per node bene�t
of compression increases. Thus there is a tension between
reducing overall traf�c by more aggregation versus avoiding
excessive degree of aggregation to prevent concentration of
energy burdens.

Thus if the compression performance is substantial then it
will be preferable to aggregate traf�c, however one should not
do this too aggressively � it depends on the spatial burstiness of
phenomena. Overall the conclusion is that, the harm from the
traf�c concentration and burstiness of spatial scales of events
have a synergistic effect on the imbalance of energy burdens,
thus one should be very conservative on aggregating traf�c in
large scale sensor networks.

VI. CONCLUSION AND FUTURE WORK

In this paper we address a fundamental scalability problem
for energy-constrained large scale sensor networks based on
wireless relaying: sensors in the vicinity of sinks incur a
much higher energy burden. To mitigate this problem we
consider jointly exploiting several ideas: reducing the traf�c
on the network through local aggregation/compression and
making the sinks mobile. However in most regimes where
such schemes are applicable, we argue that network operation
can still be optimized to enhance the the operational lifetime

of a typical sensor. The key idea is to spread out aggregated
traf�c when it is forwarded from AGNs to sinks in order to
smooth inhomogeneities in the energy burdens the network
will incur.

In particular we introduce a model for bursty spatial phe-
nomena, which serves as a caricature of some practical sensing
applications. Such burstiness has a deleterious effect on the
balancing of energy burdens. Interestingly under our model,
the degree to which traf�c should be spread is interwoven
in a subtle way with the spatial scales on which traf�c is
aggregated. Increasing the degree of traf�c spreading results in
smoother energy burdens but incurs additional overall energy
burdens. By contrast, increasing the degree of aggregation
reduces the per sensor traf�c and thus overall energy burdens,
but increases the spatial variability of energy burdens. More-
over these tradeoffs are not `orthogonal' to each other. In this
paper we provide a stochastic geometric model to investigate
this interaction. By adopting simple models for compression
and energy burdens we were able to show how the mean and
variance of energy burdens for a typical node relate to the
scales for spreading and aggregation. We considered the joint
optimization of these scales via numerical methods, and found
that while spreading reduces the variance induced by overlaps
of `long' routes towards sinks, this only helps to the extent that
the increased mean energy costs do not counteract the bene�t.
Similarly the more aggregation the better, unless this adversely
affects the variability of energy burdens on the network. From
our numerical results we can concretely see how these aspects
counterbalance each other.

Our key contributions lie in observing the effect of the
spatial burstiness of sensing phenomena to the energy burden
in a large-scale network. From our results we see that if
the achievable compression is high one should aggregate
more traf�c. However if the events are spatially bursty this
would require more spreading of traf�c to counterbalance the
concentration of energy burdens. Also if the events are less
bursty one can aggregate more traf�c to enjoy the bene�t of
compression. Overall, perhaps surprisingly, a high degree of
aggregation for even moderate spatial scales of phenomena
turns out to be a harmful idea even for good compression
performance: the synergistic effects of clustered events and
concentration of burdens at AGNs are typically hard to over-
come by simple proactive spreading and the gains in reducing
traf�c via compression. Thus one should avoid this in the
�rst place: at most 10 sensors per AGN seems to be the
reasonable way of organizing networks. However if one is
able to devise practical ways of incorporating more elegant
way of providing compression/fusion gains, e.g., distributed
compression or network coding one may be able to overcome
such burstiness with or without the traf�c aggregation.

APPENDIX

Proof of Proposition 4: We have that

E0
1

[ ∑

xi∈Π0

1(xi ∈ V0(Π1) ∩ Φ)

]2
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= E0
1

[ ∑

xi∈Π0

1(xi ∈ V0(Π1) ∩ Φ)

+
∑

xj ,xk∈V0(Π1)∩Π0
yj 6=yk

1(xi, xj ∈ V0(Π1) ∩ Φ)


 (26)

The �rst term of the above is already shown to be λ0
λ1

p. Using
the expression for the second-order moment measure of PPP
[12] the second term is given by

λ2
0

∫∫
Ex,y

0 [1(x, y ∈ V0(Π1) ∩ Φ)] dxdy

= λ2
0

∫∫
Ex,y

0 [1(x, y ∈ V0(Π1))]P(x, y ∈ Φ)dxdy

= λ2
0

∫∫
P({B‖x‖(x) ∪B‖y‖(y)} ∩Π1 = ∅)P(x, y ∈ Φ)dxdy.

(27)

Using the (non-centered) covariance results for stationary
Boolean model [12], we have that

P(x, y ∈ Φ) = 2p− 1 + (1− p)2 exp(λeC(re, ‖x− y‖))
where the function C(r, d) is de�ned as the area of the inter-
section of two balls of radius r whose centers are separated by
distance d if d ≤ 2r and 0 otherwise. If we divide P (x, y ∈ Φ)
by p and take the limit as λe → 0, we have that

lim
λe→0

P(x, y ∈ Φ)
p

= lim
λe→0

1− 2e−λeπr2
e + e−2λeπr2

e+λeC(re,‖x−y‖)

1− exp(−λeπr2
e)

=
C(r, ‖x− y‖)

πr2
e

, (28)

using L'Hospital's rule. Thus we have that, with λe vanishing
and by letting D(x, y) := |{B‖x‖(x) ∪B‖y‖(y)}|,

λ2
0

∫∫
P({B‖x‖(x) ∪B‖y‖(y)} ∩Π1 = ∅)P(x, y ∈ Φ)dxdy

≈ pλ2
0

∫∫
exp(−λ1D(x, y))

C(re, ‖x− y‖)
πr2

e

dxdy (29)

= p
λ2

0

λ2
1

∫∫
exp(−D(x, y))

C(re, ‖x− y‖/√λ1)
πr2

e

dxdy

Since (29) cannot be reduced to closed form, we use the
following technique to obtain an upper bound. Firstly it is
easy to verify that

C(re, ‖x− y‖/√λ1)
πr2

e

≤ exp(−‖x− y‖
2
√

λ1re

).

Let

g(ρ) :=
∫ ∫

exp(−D(x, y)) exp(−ρ‖x− y‖)dxdy.

where ρ := 1/(2
√

λ1re). We make change of variables by
letting ‖x‖ = r1, ‖y‖ = r2, ‖x − y‖ = r3 then note this
can be expressed in triple integral of r1, r2, r3. For simplicity
of notation denote D(x, y) by D̄(r) where r := (r1, r2, r3)

and denote the triple integral
∫∫∫

dr1dr2dr3 by
∫

dr. One can
verify that dxdy can be written as χ(r)dr where

χ(r) := 2πr1r2
∂

∂r3
arccos

(
r2
1 + r2

2 − r2
3

2r1r2

)
.

Then we can rewrite g(ρ) as

g(ρ) =
∫

exp(−D̄(r)) exp(−ρr3)χ(r)dr.

We have the following lemma.
Lemma 1: Let h(r) = exp(−D̄(r))χ(r). Suppose there

exists a positive constant k such that
∫

r3h(r)dr∫
h(r)dr

<

∫
r3h(r) exp(−kr3)dr∫
h(r) exp(−2kr3)dr

(30)

holds. Then

g(ρ) ≤ 1
1 + cρ

∫
h(r)dr (31)

holds for ρ > 0 where

c :=
∫

r3h(r)dr∫
h(r)dr

. (32)

Proof: Let γ(ρ) := (1 + cρ)g(ρ), and since γ(0) =∫
h(r)dr, it suf�ces to show that γ(ρ) is nonincreasing for

ρ > 0. Let

f(r3, ρ) := exp(−r3ρ)(1 + cρ).

Since ∫
h(r)

∂f

∂ρ
dr

is uniformly convergent in ρ and h(ρ) is �nite for all ρ > 0,
the following relation for derivatives hold [16]:

dγ

dρ
=

∫
h(r)

∂f

∂ρ
dr

=
∫

h(r) exp(−ρr3)(c− r3(1 + cρ))dr

We will show that dγ
dρ is negative for all ρ > 0. Since

dγ

dρ
=

∫
h(r) exp(−ρr3)(c− cr3ρ− r3))dr (33)

≤
∫

h(r) exp(−ρr3)(c exp(−ρr3)− r3)dr (34)

= c

∫
h(r) exp(−2ρr3)dr−

∫
h(r)r3 exp(−ρr3)dr

(35)

where in (34) we have used e−x ≥ 1 − x for all x ≥ 0. Let
us de�ne the following:

f1(ρ) :=
∫

h(r) exp(−2ρr3)dr, (36)

f2(ρ) :=
∫

r3h(r) exp(−ρr3)dr, (37)

then we can write (35) as cf1(ρ) − f2(ρ). One can show
that using the monotonic properties of f1(ρ) and f2(ρ),
the equation cf1(ρ) = f2(ρ) has at most one solution. By
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de�nition of c we have that cf1(0) = f2(0). Thus for ρ > 0,
cf1(ρ)− f2(ρ) is either strictly positive or negative.

However by (30) implies there exists a constant4 k > 0
such that cf1(k) − f2(k) < 0, thus we can conclude that
cf1(ρ)− f2(ρ) is negative for all ρ > 0. Thus dγ

dρ is negative
for all ρ > 0 which implies γ(ρ) is decreasing in ρ, which
completes the proof.
It can be easily seen that

∫
h(r)dr is the second moment of the

area of the typical Voronoi cell induced by a stationary point
process of density 1, which gives ≈ 1.28. Also numerical
evaluation yields c ≈ 0.66. Combining (31) and (26) we have
proven Proposition 4.
Proof of Proposition 5: Note

E

[
1(O ∈ Φ)

∑

xi∈Π0

1(xi ∈ Φ ∩ V0(Π1))

]

= E

[ ∑

xi∈Π0

1({xi, O} ∈ Φ ∩ V0(Π1))

]

= 2πλ0

∫
Ex

0 [1({x,O} ∈ Φ ∩ V0(Π1))dx]

= 2πλ0

∫
Ex

0 [1(x ∈ V0(Π1))]E [1({x,O} ∈ Φ)] dx

= 2πλ0

∫
exp(−πλ1‖x‖2)

× {2p− 1 + (1− p)2 exp(λeC(re, ‖x‖))}dx.

By evaluating the �rst order term with respect to p in the way
similar to (28), we have that

2πλ0p

∫
exp(−πλ1‖x‖2)C(re, ‖x− y‖)

πr2
e

dx (38)

≤ 2πλ0p

∫ 2re

0

ρ exp(−πλ1ρ
2){1− ρ

2re
}dρ (39)

=
λ0p

λ1
{1− erf(2πre

√
λ1)

4re

√
λ1

} (40)

where in (39) we have used the fact that
C(re, ρ)

πr2
e

≤ (1− ρ

2re
)1(ρ ≤ 2re)

by the convexity of C(re,ρ)
πr2

e
with respect to ρ.
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